B.Sc. (Honours) Examination, 2020 Semester-IV **Statistics**

Course: CC-7

(Mathematical Analysis [Theory and Tutorial]) Time: 3 Hours Full Marks: 60

Questions are of value as indicated in the margin Notations have their usual meanings

Group - A (Answer any ten questions) $10 \times 1 = 10$

- 1. Answer the following questions with proper justification.
 - (a) Give an example of a set which is not ordered field.
 - (b) How do you represent $\sqrt{8}$ on directed line?
 - (c) Write down the definition of equivalent sets and give an example.
 - (d) Find Sup(S) and Inf(S) of $S = \{|x| : x^2 < 1, x \in R\}$.
 - (e) Discuss if $\{\tan \frac{10\pi}{n}\}$ is a sequence or not.
 - (f) Justify whether every convergent sequence is bounded or not.
 - (g) Suppose $\sum u_n$ is an infinite series with $\lim_{n\to\infty}u_n=0$. What can you conclude about the series convergence?
 - (h) If $\sum u_n$ be a convergent series of positive real numbers then what can you say about the convergence of series $\sum u_n^4$.
 - (i) How to represent a step function by using indicator function?
 - (j) Is $f(x) = [x], x \in \mathbb{R}$ a bijective function?
 - (k) Find $\lim_{x\to 0} Sgn(x)$.
 - (1) What do you mean by uniform continuity?
 - (m) How you can derive Lagrange's mean value theorem from Cauchy's mean value theorem?
 - (n) What is the relation between ∇ and Δ operator?

Group - B (Answer any five questions) $5 \times 6 = 30$

- 2. (a) Show that $2.7^{n} + 3.5^{n} 5$ is divisible by 12.
 - (b) Show that the set of rational numbers Q is not order complete. 3 + 3
- 3. (a) Show that $\{n^{\frac{1}{n+1}}\}$ converges to 1. (b) Find $\lim_{n\to\infty} \left[\frac{1^2}{n^3} + \frac{2^2}{n^3} + \dots + \frac{n^2}{n^3}\right]$. 3 + 3

- 4. (a) State and prove Cauchy's first limit theorem on sequence.
 - (b) Show that the sequence $\{x_n\}$ where $x_n = 1 + \frac{1}{2!} + \frac{1}{3!} + \cdots + \frac{1}{n!}$ is convergent. 4+2
- 5. (a) Discuss the statement: Every bounded sequence is a Cauchy sequence.
 - (b) Suppose $x_n = (1 \frac{1}{n^2})\sin(\frac{n\pi}{4})$, then find two subsequences of $\{x_n\}$ one of which converges to the $\overline{\lim} x_n$ and other converges to the $\underline{\lim} x_n$.
- 6. (a) Comments on the series $\sum (\sqrt[3]{n^4+1} \sqrt[3]{n^4-1})$.
 - (b) Discuss the convergence of the series $\frac{2+k}{3+k} + \frac{2^2+k}{3^2+k} + \frac{2^3+k}{3^3+k} + \cdots$.
- 7. (a) If $\sum u_n$ be a convergent series of positive real numbers, then show that $\sum \frac{u_n}{1+u_n}$ is also convergent.
 - (b) State the alternative form of Gauss test. Discuss the convergence of the series $1 + \frac{\alpha}{1!} + \frac{\alpha(\alpha+1)}{2!} + \frac{\alpha(\alpha+1)(\alpha+2)}{3!} + \cdots$.
- 8. (a) State and prove Leibnitz's test.
 - (b) Discuss the conditional convergence of the series $\sum \frac{(-1)^{n-1}}{(n+1)^2 \log (n+1)}$. 3+3
- 9. (a) Show that $\lim_{x\to 0} \sin^3\left(\frac{1}{x}\right)$ does not exists.
 - (b) Let $f:(0,\infty)\to R$ be defined by $f(x)=x(e^{\frac{1}{x^3}}-1+\frac{1}{x^3})$. Then find out correct statement(s).
 - (i) $\lim_{x\to\infty} f(x)$ exists. (ii) $\lim_{x\to\infty} xf(x)$ exists. (iii) $\lim_{x\to\infty} x^2f(x)$ exists. (iv) There exists m>0 such that $\lim_{x\to\infty} x^mf(x)$ does not exists. 3+3

$$Group - C \ (Answer \ any \ two \ questions)$$
 $2 \times 10 = 20$

- 10. (a) If f and g be two functions which are continuous at c, then show that f(x)g(x) is continuous at c.
 - (b) Let f(x) = x|x| + |x 1|, $x \in \mathbb{R}$. Then which of the following statements is true? (i) f is not differentiable at x = 0, 1. (ii) f is differentiable at x = 0 but not differentiable at x = 1. (iii) f is not differentiable at x = 0 but differentiable at x = 1. (iv) f is differentiable at x = 0, 1.
 - (c) If $a_0 + \frac{a_1}{2} + \frac{a_2}{3} + \dots + \frac{a_n}{n+1} = 0$, where $a_i \in R$, show that the equation $a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n = 0$ has at least one real root between (0, 1).
- 11. (a) Let a function $f:[0,1] \to \mathbf{R}$ be continuous on [0,1] and differentiable on (0,1). If f(0) = 1 and $[f(1)]^3 + 2f(1) = 5$, then prove that \exists a $c \in (0,1)$ such that $f'(c) = \frac{2}{2+3[f(c)]^2}$.
 - (b) Using Taylor's theorem or otherwise show that $x \frac{x^3}{3!} < \sin(x) < x \frac{x^3}{3!} + \frac{x^5}{5!}$, for x > 0.
 - (c) Obtain the power series expansion of $\cos(x)$. 3+3+4
- 12. (a) Let a function y = f(x) have the values $y_0, y_1, ...y_n$ corresponding to the values of the argument $x_0, x_0 + h, ..., x_0 + nh$, then for any non-negative integer m, show that $\Delta^m y_r = \sum_{i=0}^m (-1)^{m-i} {m \choose i} y_{r+i}$.
 - (b) State and prove Gauss's Forward Interpolation Formula.
 - (c) Find the solution of the difference equation $x(n+1)-3^n x(n)=0$. 3+4+3